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TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS
OF RECTANGULAR PANEL WITH HOLE USING NICE/SPAR
By
1 2 -2

Zia Razzaq , Venkatesh Prasad , Siva Prasad Darbhamulla

A. Panel Geometry and loading

A panel 30 1in. long, 11.5 in. wide, with a 2.0 in. diameter hole at

the center 1s analyzed. Since a two-dimensional analysis is conducted,

the thickness of the panel is taken as unity., Figure 1 shows the panel

and the applied compressive loading. Owing to the symmetry,

it is

sufficient to analyze only one-fourth of the panel with appropriate

boundary conditions.

B. Types of Discretizations

Figures 2 through 8 show the various types of discretizations

investigated using E41 quadrilateral elements of NICE/SPAR. Figures 9

‘through 15 show the discretizations investigated using E31 triangular

elements of NICE/SPAR. The triangular element discretization is obtained

by simply adding a diagonal to each of the quadrilaterals. An enlarged

view of the discretization near the hole is also given in each of these

figures. Increasing number of elements are considered in order to

conduct a systematic convergence study.,
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c.

Isotropic Panel

The following material properties are adopted for the isotropic
panel:
E = 10,000 ksi
Y = 0.3
which correspond to those of a typical aluminum alloy. Tables 1 and 2
present a summary of the results for the quadrilateral, and triangular
isotropic elements, In these tables, the number of elements used for

one-fourth of the panel, the total CPU time for each computer rum, ¢

largest principal compressive stress, cﬂ;ax , and the corresponding
element number are given. Figure 16 gives the graphical representation
of the relationships between (J;axand the number of finite elements used.
Clearly, the triangular elements provide a better estimate of the maximum
stress (whose theoretical 1limiting value 1is 3.0). Figure 17 shows the
relationships between CPU time and the number of finite elements. The
difference between the CPU time with 120 quadrilateral elements and 240
triangular elements 1is not dramatic. The information in Figures 16 and
17 1leads to the conclusion that the triangular elements are more suitable
than the quadrilateral ones, for the two-dimensional stress analysis

problem considered here.

Orthotropic Panel

The following material properties are adopted for the orthotropic
panel:
E, = 10,000 ksi
Ey = 1,000 ksi
Yy = 0.3

Tables 3 and 4 present a summary of the results for the quadrilateral and




E.

F.

triangular orthotropic elements. Figures 18, and 19 are the
corresponding cﬂhax , and CPU time versus the number of finite elements
used, respectively. In this study, it 1is assumed that the NICE/SPAR
program  automatically accounts for the necessary transformations of
material properties and stresses from the global to local coordinates and
vice versa, Thus, the validity of the results for the orthotropic panel

depends on the correctness or otherwise of this assumption., Figure 18

shows a significant difference  between the (T'ax values for the
m
quadrilateral and triangular discretizaticns. Figure 19 exhibits the

same general character for the orthotropic panel as seen earlier in
Figure 17 for the isotropic panel. Figure 20 shows how the value of cx;ax

is affected due to a variation in the Ey/Ex ratio when 160 triangular
elements are used. For Ey/Ex = 1.0, the a;ax value from the plot agrees
with that obtained earlier using the isotropic triangular
discretization. For other Ey/E){values in the range from 0.1 to 1.0, a
smooth curve follows. However, the validity of this curve also depends
on whether or not NICE/SPAR is handling the necessary transformations

properly.

On—-Going Study

A three-~dimensional stress analysis near the hole as well as the use
of substructuring and subsequent parallelization of computations are
included in the present research activity.

Publication

A paper titled "Concurrent Processing for Nonlinear Analysis of
Hollow Rectangular Structural Sections," by Siva P. Darbhamulla, Zia
Razzaq, and 0Olaf 0. Storaasli, has been accepted for publication in

Engineering with Computers: An International Journal for Computer—aided

Mechanical and Structural Engineering, 1987.




Table 1. Summary of results for rectangular panel with hole
using E41 (NICE/SPAR) quadrilateral isotropic elements

Number of CP U Time Element No. a:nax

elements (secs) with O max - (ksi)
12 65.5 4 1.35
22 73.9 7 1.97
36 88.1 7 1.98
48 104.2 11 2.03
638 126.7 11 2.03
80 146.3 22 2.11
120 248.4 61 2.13
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Table 2., Summary of results for rectangular panel with hole
using E31 (NICE/SPAR) triangular isotropic elements

Number of CPU Time Element No o:nax
elements (secs) with Omax (ksi)
24 69.9 8 1.76
44 80.8 11 2.38
72 96.1 11 2.39
96 120.2 15 2.49
136 142.9 15 2.50
160 164.1 29 2.67
240 285.7 71 2.74




Table 3. Summary of results for rectangular panel with hole

using E41 (NICE/SPAR) quadrilateral orthotropic elements

Number of C P U Time Element No. Onax

elements (secs) with Omax (ksi)
12 68.6 5 1.47
22 78.4 7 1.60
36 88.7 7 1.62
48 105.5 13 1.64
68 127.1 13 1.61
80 146.7 25 1.66
120 243,7 72 1.95

NOTE: E, = 10,000 ksi ; Ey = 1,000 ksi,




Table 4. Summary of results for rectangular panel with hole
using E31 (NICE/SPAR) triangular orthotropic elements

Number of CP U Time Element No. Tmax
elements (secs) with Omax (ksi)
24 72.8 16 3.78
44 87.8 22 3.84
72 107.8 22 3.51
96 123.9 42 4,54
136 160.6 42 5.14
160 174.7 72 5.24
240 308.6 176 4.94
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Figure 2, Discretization with 12 quadrilateral elements
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Figure 3., Discretization with 22 quadrilateral elements
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Figure 4., Discretization with 36 quadrilateral elements
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Figure 5. Discretization with 48 quadrilateral elements
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Discretization with 68 quadrilateral elements
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Figure 7. Discretization with 80 quadrilateral elements
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Figure 9. Discretization with 24 triangular elements
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Figure 10. Discretization with 44 triangular elements
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Figure 12. Discretization with 96 triangular elements
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Discretization with 160 triangular elements
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Figure 15.

Discretization with 240 triangular elements
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Figure 16. Maximum Principal stress versus number of elements

for isotropic panel
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Figure 17. Computational time versus number of elements
for isotropic panel
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Figure 18, Maximum principal stress versus number of elements

for orthotropic panel
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Figure 19. Computational time versus number of elements
for orthotropic panel
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Figure 20. Maximum principal stress versus Ey/E ratio

for orthotropic panel
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